• Simulation-based impact analysis for sustainable manufacturing design and management

      University of Derby (2018)
      This research focuses on effective decision-making for sustainable manufacturing design and management. The research contributes to the decision-making tools that can enable sustainability analysts to capture the aspects of the economic, environmental and social dimensions into a common framework. The framework will enable the practitioners to conduct a sustainability impact analysis of a real or proposed manufacturing system and use the outcome to support sustainability decision. In the past, the industries had focused more on the economic aspects in gaining and sustaining their competitive positions; this has changed in the recent years following the Brundtland report which centred on incorporating the sustainability of the future generations into our decision for meeting today’s needs (Brundtland, 1987). The government regulations and legislation, coupled with the changes in consumers’ preference for ethical and environmentally friendly products are other factors that are challenging and changing the way companies, and organisations perceive and drive their competitive goals (Gu et al., 2015). Another challenge is the lack of adequate tools to address the dynamism of the manufacturing environment and the need to balance the business’ competitive goal with sustainability requirements. The launch of the Life Cycle Sustainability Analysis (LCSA) framework further emphasised the needs for the integration and analysis of the interdependencies of the three dimensions for effective decision-making and the control of unintended consequences (UNEP, 2011). Various studies have also demonstrated the importance of interdependence impact analysis and integration of the three sustainability dimensions of the product, process and system levels of sustainability (Jayal et al., 2010; Valdivia et al., 2013; Eastwood and Haapala, 2015). Although there are tools capable of assessing the performance of either one or two of the three sustainability dimensions, the tools have not adequately integrated the three dimensions or address the holistic sustainability issues. Hence, this research proposes an approach to provide a solution for successful interdependence impact analysis and trade-off amongst the three sustainability dimensions and enable support for effective decision-making in a manufacturing environment. This novel approach explores and integrates the concepts and principles of the existing sustainability methodologies and frameworks and the simulation modelling construction process into a common descriptive framework for process level assessment. The thesis deploys Delphi study to verify and validate the descriptive framework and demonstrates its applicability in a case study of a real manufacturing system. The results of the research demonstrate the completeness, conciseness, correctness, clarity and applicability of the descriptive framework. Thus, the outcome of this research is a simulation-based impact analysis framework which provides a new way for sustainability practitioners to build an integrated and holistic computer simulation model of a real system, capable of assessing both production and sustainability performance of a dynamic manufacturing system.