• Crashworthiness Characterisation of the Car Front Bumper System Based on FEA Analysis

      Lu, Yiling; Harmanto, Dani; Zhang, Xiyuan (University of Derby, 2020-11-19)
      This thesis investigated different designs and material selections of vehicle front bumper system to improve the vehicle crashworthiness during the low impact speed (impact velocity=15km/h, 9.32mph) via FEA simulations. The primary purpose is to identify the most important parameters directly related to the improvement of crashworthiness using numerical parametric study. It is found the cross-section profile, curvature shape, material of the bumper beam, together with the connection to the crash box have been all identified that directly influence the crashworthiness performance of the front bumper system. The bumper system, including the sub-components such as bumper beam, crash box, and the connection methods were carried all the parameters, including a number of folds, curvature shapes and spot welds were in-built while creating them into the CAD models using Solidworks. The final assembled complete bumper system is then imported into the ANSYS for further geometry checks and adjustment. Solver Autodyn is used to perform the FEA simulation, and numbers of results files were generated. Results files such as force reaction, plastic work, and equivalent stress, normal stress was all exported it into the Excel for parametric analysis and discussions. Cross-section Profile-Out of proposed Single fold (fold 1) and Triple fold(fold 3) bumper beam profiles, Double fold (fold 2) bumper beam profile presented the best results of force reaction on both smoothness and force value, while the plastic work remained almost identical to profile fold 1 and 3 gained. Fold 2 profile is considered as a good performer since this profile regulated the deformation behaviour of the beam resulted in a smooth increasing force reaction curve. Where the force reaction curve on both fold 1 and fold 3 were fluctuated dramatically due to catastrophic structural failure. Material-In between structural steel and aluminium alloy used in the bumper beam, while the structural steel made bumper beam achieved good force reaction and plastic work. Switched to aluminium can achieve similar force reaction trend and rate with Cross-section neglectable amount of plastic work reduced. Particularly the weight of the bumper beam is dropped down to 5.357 kg while maintaining similar crashworthiness performance to the structural steel. Crash box Crash box connection- The bonded connection is considered as an ideal scenario and was xvii Sensitivity: Internal favoured in much other literature due to it simplifies the connection setting in the FEA environment since it automatically considers it as perfect contact. Three alternative connection methods were therefore proposed to simulate the more realistic scenario. It defined as welding connection that is constituted by a number of spot welds at left, right, top and bottom of the crash box. Since the bonded method contains no spot welds, a method of weld L+R was indicated by totally 4 spot welds appeared at both left and right side of the crash box. On top of this, 4 additional spot welds were added to the top and bottom of the crash box. Totally 4 spot welds were added only to both the top and bottom of the crash box to extend the comparison. While both bonded and weld L+R methods suffered from buckling effect to the crash box, particularly concentrated at the left and right side with high equivalent and normal stresses. It is discovered weld full method provided promising results by reducing the buckling effect to both left and right faces of the crash box, and also managed to lower the equivalent stress down to 336.48MPa and normal stress on the connection surface down to 66MPa. Weld T+B also observed similar performance when compared with both bonded and weld L+R methods. While registered with very small amount of equivalent and normal stresses, the buckling effect is significantly reduced. This thesis contributed the knowledge to the improvement of vehicle front bumper system. Particularly to the failure mode of both bumper beam and crash box, and offered the related optimisation.
    • Effects of the graphene on the mechanical properties of fibre reinforced polymer - a numerical and experimental study

      Lu, Yiling; Dean, Angela; Pawlik, Marzena (University of Derby, 2019-11)
      Mechanical properties of carbon fibre reinforced polymer (CFRP) are greatly affected by interphase between fibre and matrix. Coating fibre with nanofillers, i.e. graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) has suggested improving the interphase properties. Although the interphase is of small thickness, it plays an important role. Quantitative characterisation of the interphase region using an experimental technique such as nanoindentation, dynamic mechanical mapping remains challenging. More recently, computational modelling has become an alternative way to study the effects of interphase on CFRP properties. Simulation work of CFRP reinforced with nanofillers mainly focuses on CNTs grown on the fibre surface called fuzzy fibre reinforced polymers. Modelling work on the effects of GNPs on CFRP properties is rather limited. This project aims to study numerically and experimentally the effects of the nano-reinforced interphase on mechanical properties of CFRP. A multiscale model was developed to study the effects of the GNPs reinforced interphase on the elastic properties of CFRP laminate. The effective material properties of the reinforced interphase were determined by considering transversely isotropic features of GNPs and various orientation. The presence of GNPs in the interphase enhances the elastic properties of CFRP lamina, and the enhancement depends on its volume fraction. The incorporation of randomly orientated GNPs in the interphase increased longitudinal and transverse lamina moduli by 5 and 12 % respectively. While aligned GNPs in the interphase yielded less improvement. The present multiscale modelling was able to reproduce experimental measurements for GNPs reinforced CFRP laminates well. The multiscale model was also proven successful in predicting fuzzy fibre reinforced polymer. Moreover, the interphase properties were inversely quantified by combining with the multiscale model with some standard material testing. A two-step optimisation process was proposed, which involved the microscale and macroscale modelling. Based on the experimental data on flexural modulus, the lamina properties were derived at macroscale modelling, which were later used to determine the interphase properties from the optimisation at the microscale. The GNPs reinforced interphase modulus was 129.1 GPa which is significantly higher than epoxy coated carbon fibre of 60.51 GPa. In the experiment, a simple spraying technique was proposed to introduce GNPs and CNTs into the CFRP. Carbon fibre prepreg was sprayed with a nanofillers-ethanol solution using an airbrush. The extremely low volume fraction of nanofillers introduced between prepreg plies caused a noticeable improvement in mechanical properties, i.e. 7% increase in strain energy release. For the first time, the GNPs-ethanol-epoxy solution was sprayed directly on the carbon fibre fabric. Resultant nano-reinforced interphase created on fibre surface showed moderate improvement in samples flexural properties. In conclusion, a multiscale modelling framework was developed and tested. The GNPs reinforced interphase improved the mechanical properties of CFRP. This enhancement depended on the orientation and volume fraction of GNPs in the interphase. Spraying was a cost-effective method to introduce nanofillers in CFRP and showed huge potential for the scale-up manufacturing process. In a combination of multiscale framework and optimisation process, the nanofillers reinforced interphase was for the first time determined. This framework could be used to optimise the development process of new fibre-reinforced composites.
    • Numerical Study of Track-Trailer Gap Aerodynamics

      Yang, Zhiyin; Lu, Yiling; Charles, Terrance Priestley (University of Derby, 2020-12-08)
      Aerodynamics have become an essential design process for ground vehicles in order to improve the fuel consumption by lowering the emissions along with increasing the range of vehicles using different source of power. A significant portion of the world CO2 emissions is a result of ground vehicles with a more significant portion of these contributed by trucks. The boxy nature of trucks is the desired shape to carry maximum payload. However, a box shaped geometry is not aerodynamically efficient. Several manufacturers have developed aerodynamic add on devices that are optimized to the shape of the truck, in order to achieve gains in lowering emission and improving range by deeper understanding of the flow physics around the vehicle. The thesis reports an in-depth understanding of the flow field within the gap region of a tractor trailer combination truck and how several aerodynamic add on devices reduce the overall drag of a truck. The gap region of a truck typically contributes to about 20-25% of the overall vehicle drag and hence presents an opportunity for considerable level of drag reduction. A basic two box bluff body (2D & 3D) model was used to investigate how the flow field changes by changing the gap width between the two bluff bodies. A section of the thesis investigates the sudden increase in drag coefficient of the downstream cube around 2D tandem bluff bodies. Distinct flow patterns were observed in the gap and around the 2D tandem at different gap ratios. The sudden change in drag coefficient for the 2D downstream bluff body is well captured numerically, which is due to the wake of the upstream cube impinging onto the front face of the downstream cube. A steady increase in drag coefficient is witnessed for the 3D cubes which are consistent with previous experimental findings. The steady increase in drag coefficient is due to the vortical structures formed around the 3D cubes which are different, which consist of a smooth transition. Hence, they result in steady increase in drag coefficient. A second study was conducted on a realistic truck like test case with the simplified truck model where the leading edges of the tractor were rounded off to manipulate the flow separation. As a result of leading edge rounding off the flow separation reduced significantly resulting in a major portion of the flow remain attached to the lateral walls of the tractor. This was seen to increase the flow entering the gap region between the tractor and trailer. Finally, several add on devices which were subdivided based on tractor and trailer mounted devices were numerically assessed with several other devices within the gap region. Significant level of drag reduction was achieved for the entire truck with these add on devices. The highest drag reduction was achieved with the base bleeding technique. Overall, the research has shown that it is important to control the flow condition within the gap region and maintain an even pressure on the front face of the trailer. The base bleeding method proved to be a vital technique to further reduce drag.
    • Thermo-mechanical reliability studies of lead-free solder interconnects

      Mallik, Sabuj; Lu, Yiling; Depiver, Joshua Adeniyi (University of DerbyN/A, 2021-06-03)
      Solder interconnections, also known as solder joints, are the weakest link in electronics packaging. Reliability of these miniature joints is of utmost interest - especially in safety-critical applications in the automotive, medical, aerospace, power grid and oil and drilling sectors. Studies have shown that these joints' critical thermal and mechanical loading culminate in accelerated creep, fatigue, and a combination of these joints' induced failures. The ball grid array (BGA) components being an integral part of many electronic modules functioning in mission-critical systems. This study investigates the response of solder joints in BGA to crucial reliability influencing parameters derived from creep, visco-plastic and fatigue damage of the joints. These are the plastic strain, shear strain, plastic shear strain, creep energy density, strain energy density, deformation, equivalent (Von-Mises) stress etc. The parameters' obtained magnitudes are inputted into established life prediction models – Coffin-Manson, Engelmaier, Solomon (Low cycle fatigue) and Syed (Accumulated creep energy density) – to determine several BGA assemblies' fatigue lives. The joints are subjected to thermal, mechanical and random vibration loadings. The finite element analysis (FEA) is employed in a commercial software package to model and simulate the responses of the solder joints of the representative assemblies' finite element models. As the magnitude and rate of degradation of solder joints in the BGA significantly depend on the composition of the solder alloys used to assembly the BGA on the printed circuit board, this research studies the response of various mainstream lead-free Sn-Ag-Cu (SAC) solders (SAC305, SAC387, SAC396 and SAC405) and benchmarked those with lead-based eutectic solder (Sn63Pb37). In the creep response study, the effects of thermal ageing and temperature cycling on these solder alloys' behaviours are explored. The results show superior creep properties for SAC405 and SAC396 lead-free solder alloys. The lead-free SAC405 solder joint is the most effective solder under thermal cycling condition, and the SAC396 solder joint is the most effective solder under isothermal ageing operation. The finding shows that SAC405 and SAC396 solders accumulated the minimum magnitudes of stress, strain rate, deformation rate and strain energy density than any other solder considered in this study. The hysteresis loops show that lead-free SAC405 has the lowest dissipated energy per cycle. Thus the highest fatigue life, followed by eutectic lead-based Sn63Pb37 solder. The solder with the highest dissipated energy per cycle was lead-free SAC305, SAC387 and SAC396 solder alloys. In the thermal fatigue life prediction research, four different lead-free (SAC305, SAC387, SAC396 and SAC405) and one eutectic lead-based (Sn63Pb37) solder alloys are defined against their thermal fatigue lives (TFLs) to predict their mean-time-to-failure for preventive maintenance advice. Five finite elements (FE) models of the assemblies of the BGAs with the different solder alloy compositions and properties are created with SolidWorks. The models are subjected to standard IEC 60749-25 temperature cycling in ANSYS 19.0 mechanical package environment. SAC405 joints have the highest predicted TFL of circa 13.2 years, while SAC387 joints have the least life of circa 1.4 years. The predicted lives are inversely proportional to the magnitude of the areas of stress-strain hysteresis loops of the solder joints. The prediction models are significantly consistent in predicted magnitudes across the solder joints irrespective of the damage parameters used. Several failure modes drive solder joints and damage mechanics from the research and understand an essential variation in the models' predicted values. This investigation presents a method of managing preventive maintenance time of BGA electronic components in mission-critical systems. It recommends developing a novel life prediction model based on a combination of the damage parameters for enhanced prediction. The FEA random vibration simulation test results showed that different solder alloys have a comparable performance during random vibration testing. The fatigue life result shows that SAC405 and SAC396 have the highest fatigue lives before being prone to failure. As a result of the FEA simulation outcomes with the application of Coffin-Manson's empirical formula, the author can predict the fatigue life of solder joint alloys to a higher degree of accuracy of average ~93% in an actual service environment such as the one experienced under-the-hood of an automobile and aerospace. Therefore, it is concluded that the combination of FEA simulation and empirical formulas employed in this study could be used in the computation and prediction of the fatigue life of solder joint alloys when subjected to random vibration. Based on the thermal and mechanical responses of lead-free SAC405 and SAC396 solder alloys, they are recommended as a suitable replacement of lead-based eutectic Sn63Pb37 solder alloy for improved device thermo-mechanical operations when subjected to random vibration (non-deterministic vibration). The FEA simulation studies' outcomes are validated using experimental and analytical-based reviews in published and peer-reviewed literature.